
Hibernate
Notes for ProfessionalsHibernate

Notes for Professionals

GoalKicker.com
Free Programming Books

Disclaimer
This is an unocial free book created for educational purposes and is

not aliated with ocial Hibernate group(s) or company(s).
All trademarks and registered trademarks are

the property of their respective owners

30+ pages
of professional hints and tricks

https://goalkicker.com
https://goalkicker.com


Contents
About 1 ................................................................................................................................................................................... 

Chapter 1: Getting started with Hibernate 2 ...................................................................................................... 
Section 1.1: Using XML Configuration to set up Hibernate 2 ......................................................................................... 
Section 1.2: Simple Hibernate example using XML 4 ..................................................................................................... 
Section 1.3: XML-less Hibernate configuration 6 ........................................................................................................... 

Chapter 2: Fetching in Hibernate 8 .......................................................................................................................... 
Section 2.1: It is recommended to use FetchType.LAZY. Join fetch the columns when they are needed

8 .................................................................................................................................................................................. 

Chapter 3: Hibernate Entity Relationships using Annotations 10 ............................................................ 
Section 3.1: Bi-Directional Many to Many using user managed join table object 10 ................................................ 
Section 3.2: Bi-Directional Many to Many using Hibernate managed join table 11 .................................................. 
Section 3.3: Bi-directional One to Many Relationship using foreign key mapping 12 .............................................. 
Section 3.4: Bi-Directional One to One Relationship managed by Foo.class 12 ....................................................... 
Section 3.5: Uni-Directional One to Many Relationship using user managed join table 13 ..................................... 
Section 3.6: Uni-directional One to One Relationship 14 .............................................................................................. 

Chapter 4: HQL 15 ............................................................................................................................................................ 
Section 4.1: Selecting a whole table 15 ........................................................................................................................... 
Section 4.2: Select specific columns 15 .......................................................................................................................... 
Section 4.3: Include a Where clause 15 .......................................................................................................................... 
Section 4.4: Join 15 ........................................................................................................................................................... 

Chapter 5: Native SQL Queries 16 ............................................................................................................................ 
Section 5.1: Simple Query 16 ........................................................................................................................................... 
Section 5.2: Example to get a unique result 16 ............................................................................................................. 

Chapter 6: Mapping associations 17 ....................................................................................................................... 
Section 6.1: One to One Hibernate Mapping 17 ............................................................................................................. 

Chapter 7: Criterias and Projections 19 ................................................................................................................ 
Section 7.1: Use Filters 19 ................................................................................................................................................. 
Section 7.2: List using Restrictions 20 ............................................................................................................................. 
Section 7.3: Using Projections 20 .................................................................................................................................... 

Chapter 8: Custom Naming Strategy 21 ............................................................................................................... 
Section 8.1: Creating and Using a Custom ImplicitNamingStrategy 21 ...................................................................... 
Section 8.2: Custom Physical Naming Strategy 21 ....................................................................................................... 

Chapter 9: Caching 24 ..................................................................................................................................................... 
Section 9.1: Enabling Hibernate Caching in WildFly 24 ................................................................................................. 

Chapter 10: Association Mappings between Entities 25 ................................................................................ 
Section 10.1: One to many association using XML 25 ................................................................................................... 
Section 10.2: OneToMany association 27 ....................................................................................................................... 

Chapter 11: Lazy Loading vs Eager Loading 28 ................................................................................................. 
Section 11.1: Lazy Loading vs Eager Loading 28 ............................................................................................................ 
Section 11.2: Scope 29 ....................................................................................................................................................... 

Chapter 12: Enable/Disable SQL log 31 ................................................................................................................. 
Section 12.1: Using a logging config file 31 .................................................................................................................... 
Section 12.2: Using Hibernate properties 31 .................................................................................................................. 
Section 12.3: Enable/Disable SQL log in debug 31 ........................................................................................................ 

Chapter 13: Hibernate and JPA 33 ............................................................................................................................ 



Section 13.1: Relationship between Hibernate and JPA 33 ........................................................................................... 

Chapter 14: Performance tuning 34 ........................................................................................................................ 
Section 14.1: Use composition instead of inheritance 34 .............................................................................................. 

Credits 35 .............................................................................................................................................................................. 

You may also like 36 ........................................................................................................................................................ 



GoalKicker.com – Hibernate Notes for Professionals 1

About

Please feel free to share this PDF with anyone for free,
latest version of this book can be downloaded from:

https://goalkicker.com/HibernateBook

This Hibernate Notes for Professionals book is compiled from Stack Overflow
Documentation, the content is written by the beautiful people at Stack Overflow.
Text content is released under Creative Commons BY-SA, see credits at the end

of this book whom contributed to the various chapters. Images may be copyright
of their respective owners unless otherwise specified

This is an unofficial free book created for educational purposes and is not
affiliated with official Hibernate group(s) or company(s) nor Stack Overflow. All

trademarks and registered trademarks are the property of their respective
company owners

The information presented in this book is not guaranteed to be correct nor
accurate, use at your own risk

Please send feedback and corrections to web@petercv.com

https://goalkicker.com/HibernateBook
https://archive.org/details/documentation-dump.7z
https://archive.org/details/documentation-dump.7z
mailto:web@petercv.com
https://goalkicker.com/


GoalKicker.com – Hibernate Notes for Professionals 2

Chapter 1: Getting started with Hibernate
Version Documentation Link Release Date
4.2.0 http://hibernate.org/orm/documentation/4.2/ 2013-03-01

4.3.0 http://hibernate.org/orm/documentation/4.3/ 2013-12-01

5.0.0 http://hibernate.org/orm/documentation/5.0/ 2015-09-01

Section 1.1: Using XML Configuration to set up Hibernate
I create a file called database-servlet.xml somewhere on the classpath.

Initially your config file will look like this:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jdbc="http://www.springframework.org/schema/jdbc"
xmlns:tx="http://www.springframework.org/schema/tx"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.2.xsd
   http://www.springframework.org/schema/jdbc
http://www.springframework.org/schema/jdbc/spring-jdbc-3.2.xsd
   http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx-3.2.xsd">

</beans>

You'll notice I imported the tx and jdbc Spring namespaces. This is because we are going to use them quite heavily
in this config file.

First thing you want to do is enable annotation based transaction management (@Transactional). The main reason
that people use Hibernate in Spring is because Spring will manage all your transactions for you. Add the following
line to your configuration file:

<tx:annotation-driven />

We need to create a data source. The data source is basically the database that Hibernate is going to use to persist
your objects. Generally one transaction manager will have one data source. If you want Hibernate to talk to multiple
data sources then you have multiple transaction managers.

<bean id="dataSource"
    class="org.springframework.jdbc.datasource.DriverManagerDataSource">
    <property name="driverClassName" value="" />
    <property name="url" value="" />
    <property name="username" value="" />
    <property name="password" value="" />
</bean>

The class of this bean can be anything that implements javax.sql.DataSource so you could write your own. This
example class is provided by Spring, but doesn't have its own thread pool. A popular alternative is the Apache
Commons org.apache.commons.dbcp.BasicDataSource, but there are many others. I'll explain each of the
properties below:

driverClassName: The path to your JDBC driver. This is a database specific JAR that should be available on

http://hibernate.org/orm/documentation/4.2/
http://hibernate.org/orm/documentation/4.3/
http://hibernate.org/orm/documentation/5.0/
https://goalkicker.com/


GoalKicker.com – Hibernate Notes for Professionals 3

your classpath. Ensure that you have the most up to date version. If you are using an Oracle database, you'll
need a OracleDriver. If you have a MySQL database, you'll need a MySQLDriver. See if you can find the driver
you need here but a quick google should give you the correct driver.

url: The URL to your database. Usually this will be something like
jdbc\:oracle\:thin\:\path\to\your\database or jdbc:mysql://path/to/your/database. If you google
around for the default location of the database you are using, you should be able to find out what this should
be. If you are getting a HibernateException with the message org.hibernate.HibernateException:
Connection cannot be null when 'hibernate.dialect' not set and you are following this guide, there is
a 90% chance that your URL is wrong, a 5% chance that your database isn't started and a 5% chance that
your username/password is wrong.

username: The username to use when authenticating with the database.

password: The password to use when authenticating with the database.

The next thing, is to set up the SessionFactory. This is the thing that Hibernate uses to create and manage your
transactions, and actually talks to the database. It has quite a few configuration options that I will try to explain
below.

<bean id="sessionFactory"
   class="org.springframework.orm.hibernate4.LocalSessionFactoryBean">
    <property name="dataSource" ref="dataSource" />
    <property name="packagesToScan" value="au.com.project />
    <property name="hibernateProperties">
        <props>
            <prop key="hibernate.use_sql_comments">true</prop>
            <prop key="hibernate.hbm2ddl.auto">validate</prop>
        </props>
    </property>
</bean>

dataSource: Your data source bean. If you changed the Id of the dataSource, set it here.

packagesToScan: The packages to scan to find your JPA annotated objects. These are the objects that the
session factory needs to manage, will generally be POJO's and annotated with @Entity. For more information
on how to set up object relationships in Hibernate see here.

annotatedClasses (not shown): You can also provide a list of classes for Hibernate to scan if they are not all in
the same package. You should use either packagesToScan or annotatedClasses but not both. The
declaration looks like this:

<property name="annotatedClasses">
    <list>
        <value>foo.bar.package.model.Person</value>
        <value>foo.bar.package.model.Thing</value>
    </list>
</property>

hibernateProperties: There are a myriad of these all lovingly documented here. The main ones you will be
using are as follows:
hibernate.hbm2ddl.auto: One of the hottest Hibernate questions details this property. See it for more info. I
generally use validate, and set up my database using either SQL scripts (for an in-memory), or create the
database beforehand (existing database).
hibernate.show_sql: Boolean flag, if true Hibernate will print all the SQL it generates to stdout. You can also
configure your logger to show you the values that are being bound to the queries by setting

http://mvnrepository.com/tags/jdbc
http://stackoverflow.com/questions/24257449/how-do-i-use-annotations-to-define-x-relationship-in-hibernate-4-and-spring
http://docs.jboss.org/hibernate/orm/4.3/manual/en-US/html_single/#configuration-optional
http://stackoverflow.com/questions/438146/hibernate-hbm2ddl-auto-possible-values-and-what-they-do
https://goalkicker.com/


GoalKicker.com – Hibernate Notes for Professionals 4

log4j.logger.org.hibernate.type=TRACE log4j.logger.org.hibernate.SQL=DEBUG in your log manager (I
use log4j).
hibernate.format_sql: Boolean flag, will cause Hibernate to pretty print your SQL to stdout.
hibernate.dialect (Not shown, for good reason): A lot of old tutorials out there show you how to set the
Hibernate dialect that it will use to communicate to your database. Hibernate can auto-detect which dialect
to use based on the JDBC driver that you are using. Since there are about 3 different Oracle dialects and 5
different MySQL dialects, I'd leave this decision up to Hibernate. For a full list of dialects Hibernate supports
see here.

The last 2 beans you need to declare are:

<bean class="org.springframework.dao.annotation.PersistenceExceptionTranslationPostProcessor"
   id="PersistenceExceptionTranslator" />

<bean id="transactionManager"
   class="org.springframework.orm.hibernate4.HibernateTransactionManager">
    <property name="sessionFactory" ref="sessionFactory" />
</bean>

The PersistenceExceptionTranslator translates database specific HibernateException or SQLExceptions into
Spring exceptions that can be understood by the application context.

The TransactionManager bean is what controls the transactions as well as roll-backs.

Note: You should be autowiring your SessionFactory bean into your DAO's.

Section 1.2: Simple Hibernate example using XML
To set up a simple hibernate project using XML for the configurations you need 3 files, hibernate.cfg.xml, a POJO for
each entity, and a EntityName.hbm.xml for each entity. Here is an example of each using MySQL:

hibernate.cfg.xml

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE hibernate-configuration PUBLIC
"-//Hibernate/Hibernate Configuration DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>
   <session-factory>
   <property name="hibernate.dialect">
      org.hibernate.dialect.MySQLDialect
   </property>
   <property name="hibernate.connection.driver_class">
      com.mysql.jdbc.Driver
   </property>

   <property name="hibernate.connection.url">
      jdbc:mysql://localhost/DBSchemaName
   </property>
   <property name="hibernate.connection.username">
      testUserName
   </property>
   <property name="hibernate.connection.password">
      testPassword
   </property>

   <!-- List of XML mapping files -->

http://docs.jboss.org/hibernate/orm/4.3/manual/en-US/html_single/#configuration-optional-dialects
https://goalkicker.com/


GoalKicker.com – Hibernate Notes for Professionals 5

   <mapping resource="HibernatePractice/Employee.hbm.xml"/>

</session-factory>
</hibernate-configuration>

DBSchemaName, testUserName, and testPassword would all be replaced. Make sure to use the full resource name
if it is in a package.

Employee.java

package HibernatePractice;

public class Employee {
    private int id;
    private String firstName;
    private String middleName;
    private String lastName;
   
    public Employee(){
       
    }
    public int getId(){
        return id;
    }
    public void setId(int id){
        this.id = id;
    }
    public String getFirstName(){
        return firstName;
    }
    public void setFirstName(String firstName){
        this.firstName = firstName;
    }
    public String getMiddleName(){
        return middleName;
    }
    public void setMiddleName(String middleName){
        this.middleName = middleName;
    }
    public String getLastName(){
        return lastName;
    }
    public void setLastName(String lastName){
        this.lastName = lastName;
    }
}

Employee.hbm.xml

<hibernate-mapping>
   <class name="HibernatePractice.Employee" table="employee">
      <meta attribute="class-description">
         This class contains employee information.
      </meta>
      <id name="id" type="int" column="empolyee_id">
         <generator class="native"/>
      </id>
      <property name="firstName" column="first_name" type="string"/>
      <property name="middleName" column="middle_name" type="string"/>
      <property name="lastName" column="last_name" type="string"/>

https://goalkicker.com/


GoalKicker.com – Hibernate Notes for Professionals 6

   </class>
</hibernate-mapping>

Again, if the class is in a package use the full class name packageName.className.

After you have these three files you are ready to use hibernate in your project.

Section 1.3: XML-less Hibernate configuration
This example has been taken from here

package com.reborne.SmartHibernateConnector.utils;

import org.hibernate.HibernateException;
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.cfg.Configuration;

public class LiveHibernateConnector implements IHibernateConnector {

    private String DB_DRIVER_NAME = "";
    private String DB_URL = "jdbc:h2:~/liveDB;MV_STORE=FALSE;MVCC=FALSE";
    private String DB_USERNAME = "sa";
    private String DB_PASSWORD = "";
    private String DIALECT = "org.hibernate.dialect.H2Dialect";
    private String HBM2DLL = "create";
    private String SHOW_SQL = "true";
   
    private static Configuration config;
    private static SessionFactory sessionFactory;
    private Session session;
   
    private boolean CLOSE_AFTER_TRANSACTION = false;

    public LiveHibernateConnector() {
       
        config = new Configuration();

        config.setProperty("hibernate.connector.driver_class",         DB_DRIVER_NAME);
        config.setProperty("hibernate.connection.url",                 DB_URL);
        config.setProperty("hibernate.connection.username",         DB_USERNAME);
        config.setProperty("hibernate.connection.password",         DB_PASSWORD);
        config.setProperty("hibernate.dialect",                     DIALECT);
        config.setProperty("hibernate.hbm2dll.auto",                 HBM2DLL);
        config.setProperty("hibernate.show_sql",                    SHOW_SQL);
   
        /*
         * Config connection pools
         */

        config.setProperty("connection.provider_class",
"org.hibernate.connection.C3P0ConnectionProvider");
        config.setProperty("hibernate.c3p0.min_size", "5");
        config.setProperty("hibernate.c3p0.max_size", "20");
        config.setProperty("hibernate.c3p0.timeout", "300");
        config.setProperty("hibernate.c3p0.max_statements", "50");
        config.setProperty("hibernate.c3p0.idle_test_period", "3000");
       
       
        /**
         * Resource mapping

https://github.com/reborne/SmartHibernateConnector
https://goalkicker.com/


GoalKicker.com – Hibernate Notes for Professionals 7

         */
       
//        config.addAnnotatedClass(User.class);
//        config.addAnnotatedClass(User.class);
//        config.addAnnotatedClass(User.class);
   
        sessionFactory = config.buildSessionFactory();
    }

    public HibWrapper openSession() throws HibernateException {
        return new HibWrapper(getOrCreateSession(), CLOSE_AFTER_TRANSACTION);
    }

    public Session getOrCreateSession() throws HibernateException {
        if (session == null) {
            session = sessionFactory.openSession();
        }
        return session;
    }

    public void reconnect() throws HibernateException {
        this.sessionFactory = config.buildSessionFactory();
    }

   
}

Please note, that with latest Hibernate this approach doesn't work well (Hibernate 5.2 release still allow this
configuration)

https://goalkicker.com/


GoalKicker.com – Hibernate Notes for Professionals 8

Chapter 2: Fetching in Hibernate
Fetching is really important in JPA (Java Persistence API). In JPA, HQL (Hibernate Query Language) and JPQL (Java
Persistence Query Language) are used to fetch the entities based on their relationships. Although it is way better
than using so many joining queries and sub-queries to get what we want by using native SQL, the strategy how we
fetch the associated entities in JPA are still essentially effecting the performance of our application.

Section 2.1: It is recommended to use FetchType.LAZY. Join
fetch the columns when they are needed
Below is an Employer entity class which is mapped to the table employer. As you can see I used fetch =
FetchType.LAZY instead of fetch = FetchType.EAGER. The reason I am using LAZY is because Employer may have a
lot of properties later on and every time I may not need to know all the fields of an Employer, so loading all of them
will leading a bad performance then an employer is loaded.

@Entity
@Table(name = "employer")
    public class Employer  
    {  
        @Id
        @GeneratedValue(strategy = GenerationType.IDENTITY)
        private Long id;
   
        @Column(name = "name")
        private String Name;

        @OneToMany(mappedBy = "employer", fetch = FetchType.LAZY,
               cascade = { CascadeType.ALL }, orphanRemoval = true)
        private List<Employee> employees;
 
        public Long getId() {  
            return id;  
        }

        public void setId(Long id) {  
            this.id = id;  
        }

        public String getName() {  
            return name;  
        }

        public void setName(String name) {  
            this.name = name;  
        }

        public List<Employee> getEmployees() {  
            return employees;  
        }

        public void setEmployees(List<Employee> employees) {  
            this.employees = employees;  
        }  
    }  

However, for LAZY fetched associations, uninitialized proxies are sometimes leads to LazyInitializationException. In
this case, we can simply use JOIN FETCH in the HQL/JPQL to avoid LazyInitializationException.

https://goalkicker.com/


GoalKicker.com – Hibernate Notes for Professionals 9

SELECT Employer employer FROM Employer
       LEFT JOIN FETCH employer.name
       LEFT JOIN FETCH employer.employee employee
       LEFT JOIN FETCH employee.name
       LEFT JOIN FETCH employer.address

https://goalkicker.com/


GoalKicker.com – Hibernate Notes for Professionals 10

Chapter 3: Hibernate Entity Relationships
using Annotations
Annotation Details
@OneToOne Specifies a one to one relationship with a corresponding object.
@OneToMany Specifies a single object that maps to many objects.
@ManyToOne Specifies a collection of objects that map to a single object.
@Entity Specifies an object that maps to a database table.
@Table Specifies which database table this object maps too.
@JoinColumn Specifies which column a foregin key is stored in.
@JoinTable Specifies an intermediate table that stores foreign keys.

Section 3.1: Bi-Directional Many to Many using user managed
join table object
@Entity
@Table(name="FOO")
public class Foo {
    private UUID fooId;
   
    @OneToMany(mappedBy = "bar")
    private List<FooBar> bars;
}

@Entity
@Table(name="BAR")
public class Bar {
    private UUID barId;
   
    @OneToMany(mappedBy = "foo")
    private List<FooBar> foos;
}

@Entity
@Table(name="FOO_BAR")
public class FooBar {
    private UUID fooBarId;

    @ManyToOne
    @JoinColumn(name = "fooId")
    private Foo foo;

    @ManyToOne
    @JoinColumn(name = "barId")
    private Bar bar;

    //You can store other objects/fields on this table here.
}

Specifies a two-way relationship between many Foo objects to many Bar objects using an intermediate join table
that the user manages.

The Foo objects are stored as rows in a table called FOO. The Bar objects are stored as rows in a table called BAR. The
relationships between Foo and Bar objects are stored in a table called FOO_BAR. There is a FooBar object as part of
the application.

https://goalkicker.com/


GoalKicker.com – Hibernate Notes for Professionals 11

Commonly used when you want to store extra information on the join object such as the date the relationship was
created.

Section 3.2: Bi-Directional Many to Many using Hibernate
managed join table
@Entity
@Table(name="FOO")
public class Foo {
    private UUID fooId;
   
    @OneToMany
    @JoinTable(name="FOO_BAR",
        joinColumns = @JoinColumn(name="fooId"),
        inverseJoinColumns = @JoinColumn(name="barId"))
    private List<Bar> bars;
}

@Entity
@Table(name="BAR")
public class Bar {
    private UUID barId;
   
    @OneToMany
    @JoinTable(name="FOO_BAR",
        joinColumns = @JoinColumn(name="barId"),
        inverseJoinColumns = @JoinColumn(name="fooId"))
    private List<Foo> foos;
}

Specifies a relationship between many Foo objects to many Bar objects using an intermediate join table that
Hibernate manages.

The Foo objects are stored as rows in a table called FOO. The Bar objects are stored as rows in a table called BAR. The
relationships between Foo and Bar objects are stored in a table called FOO_BAR. However this implies that there is
no FooBar object as part of the application.

http://i.stack.imgur.com/zR6jB.png
http://i.stack.imgur.com/1qk3Z.png
https://goalkicker.com/


GoalKicker.com – Hibernate Notes for Professionals 12

Section 3.3: Bi-directional One to Many Relationship using
foreign key mapping
@Entity
@Table(name="FOO")
public class Foo {
    private UUID fooId;
   
    @OneToMany(mappedBy = "bar")
    private List<Bar> bars;
}

@Entity
@Table(name="BAR")
public class Bar {
    private UUID barId;
   
    @ManyToOne
    @JoinColumn(name = "fooId")
    private Foo foo;
}

Specifies a two-way relationship between one Foo object to many Bar objects using a foreign key.

The Foo objects are stored as rows in a table called FOO. The Bar objects are stored as rows in a table called BAR. The
foreign key is stored on the BAR table in a column called fooId.

Section 3.4: Bi-Directional One to One Relationship managed
by Foo.class
@Entity
@Table(name="FOO")    
public class Foo {
    private UUID fooId;
   
    @OneToOne(cascade = CascadeType.ALL)
    @JoinColumn(name = "barId")
    private Bar bar;
}

@Entity
@Table(name="BAR")
public class Bar {
    private UUID barId;
   
    @OneToOne(mappedBy = "bar")
    private Foo foo;
}

http://i.stack.imgur.com/Jh9TL.png
https://goalkicker.com/


GoalKicker.com – Hibernate Notes for Professionals 13

Specifies a two-way relationship between one Foo object to one Bar object using a foreign key.

The Foo objects are stored as rows in a table called FOO. The Bar objects are stored as rows in a table called BAR. The
foreign key is stored on the FOO table in a column called barId.

Note that the mappedBy value is the field name on the object, not the column name.

Section 3.5: Uni-Directional One to Many Relationship using
user managed join table
@Entity
@Table(name="FOO")
public class Foo {
    private UUID fooId;
   
    @OneToMany
    @JoinTable(name="FOO_BAR",
        joinColumns = @JoinColumn(name="fooId"),
        inverseJoinColumns = @JoinColumn(name="barId", unique=true))
    private List<Bar> bars;
}

@Entity
@Table(name="BAR")
public class Bar {
    private UUID barId;

    //No Mapping specified here.
}

@Entity
@Table(name="FOO_BAR")
public class FooBar {
    private UUID fooBarId;

    @ManyToOne
    @JoinColumn(name = "fooId")
    private Foo foo;

    @ManyToOne
    @JoinColumn(name = "barId", unique = true)
    private Bar bar;

    //You can store other objects/fields on this table here.
}

Specifies a one-way relationship between one Foo object to many Bar objects using an intermediate join table that
the user manages.

This is similar to a ManyToMany relationship, but if you add a unique constraint to the target foreign key you can

http://i.stack.imgur.com/ZmICg.png
https://goalkicker.com/


GoalKicker.com – Hibernate Notes for Professionals 14

enforce that it is OneToMany.

The Foo objects are stored as rows in a table called FOO. The Bar objects are stored as rows in a table called BAR. The
relationships between Foo and Bar objects are stored in a table called FOO_BAR. There is a FooBar object as part of
the application.

Notice that there is no mapping of Bar objects back to Foo objects. Bar objects can be manipulated freely without
affecting Foo objects.

Very commonly used with Spring Security when setting up a User object who has a list of Role's that they can
perform. You can add and remove roles to a user without having to worry about cascades deleting Role's.

Section 3.6: Uni-directional One to One Relationship
@Entity
@Table(name="FOO")
public class Foo {
    private UUID fooId;
   
    @OneToOne
    private Bar bar;
}

@Entity
@Table(name="BAR")
public class Bar {
    private UUID barId;
    //No corresponding mapping to Foo.class
}

Specifies a one-way relationship between one Foo object to one Bar object.

The Foo objects are stored as rows in a table called FOO. The Bar objects are stored as rows in a table called BAR.

Notice that there is no mapping of Bar objects back to Foo objects. Bar objects can be manipulated freely without
affecting Foo objects.

https://i.stack.imgur.com/ffpGs.png
http://i.stack.imgur.com/5nJYw.png
https://goalkicker.com/


GoalKicker.com – Hibernate Notes for Professionals 15

Chapter 4: HQL
HQL is Hibernate Query Language, it based on SQL and behind the scenes it is changed into SQL but the syntax is
different. You use entity/class names not table names and field names not column names. It also allows many
shorthands.

Section 4.1: Selecting a whole table
hql = "From EntityName";

Section 4.2: Select specific columns
hql = "Select id, name From Employee";

Section 4.3: Include a Where clause
hql = "From Employee where id = 22";

Section 4.4: Join
hql = "From Author a, Book b Where a.id = book.author";

https://goalkicker.com/


GoalKicker.com – Hibernate Notes for Professionals 16

Chapter 5: Native SQL Queries
Section 5.1: Simple Query
Assuming you have a handle on the Hibernate Session object, in this case named session:

List<Object[]> result = session.createNativeQuery("SELECT * FROM some_table").list();
for (Object[] row : result) {
    for (Object col : row) {
        System.out.print(col);
    }
}

This will retrieve all rows in some_table and place them into the result variable and print every value.

Section 5.2: Example to get a unique result
Object pollAnswered = getCurrentSession().createSQLQuery(
        "select * from TJ_ANSWERED_ASW where pol_id = "+pollId+" and prf_log =
'"+logid+"'").uniqueResult();

with this query, you get a unique result when you know the result of the query is always going to be unique.

And if the query returns more than one value, you will get an exception

org.hibernate.NonUniqueResultException

You also check the details in this link here with more discription

So, please be sure that you know the query will return unique result

https://stackoverflow.com/a/40233705/4374472
https://goalkicker.com/


GoalKicker.com – Hibernate Notes for Professionals 17

Chapter 6: Mapping associations
Section 6.1: One to One Hibernate Mapping
Every Country has one Capital. Every Capital has one Country.

Country.java

package com.entity;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.OneToOne;
import javax.persistence.Table;

@Entity
@Table(name = "countries")
public class Country {
    @Id
    @GeneratedValue(strategy = GenerationType.IDENTITY)
    private int id;

    @Column(name = "name")
    private String name;

    @Column(name = "national_language")
    private String nationalLanguage;

    @OneToOne(mappedBy = "country")
    private Capital capital;

    //Constructor

    //getters and setters

   }

Capital.java

package com.entity;

import javax.persistence.CascadeType;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.JoinColumn;
import javax.persistence.OneToOne;
import javax.persistence.Table;

@Entity
@Table(name = "capitals")
public class Capital {

    @Id
    @GeneratedValue(strategy = GenerationType.IDENTITY)
    private int id;

https://goalkicker.com/


GoalKicker.com – Hibernate Notes for Professionals 18

    private String name;

    private long population;

    @OneToOne(cascade = CascadeType.ALL)
    @JoinColumn(name = "country_id")
    private Country country;

    //Constructor

    //getters and setters

}

HibernateDemo.java

package com.entity;
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.cfg.Configuration;

public class HibernateDemo {

public static void main(String ar[]) {
    SessionFactory sessionFactory = new Configuration().configure().buildSessionFactory();
    Session session = sessionFactory.openSession();
    Country india = new Country();
    Capital delhi = new Capital();
    delhi.setName("Delhi");
    delhi.setPopulation(357828394);
    india.setName("India");
    india.setNationalLanguage("Hindi");
    delhi.setCountry(india);
    session.save(delhi);
    session.close();
  }

}

https://goalkicker.com/


GoalKicker.com – Hibernate Notes for Professionals 19

Chapter 7: Criterias and Projections
Section 7.1: Use Filters
@Filter is used as a WHERE camp, here some examples

Student Entity

@Entity
@Table(name = "Student")
public class Student
{
    /*...*/

    @OneToMany
    @Filter(name = "active", condition = "EXISTS(SELECT * FROM Study s WHERE state = true and s.id
= study_id)")
    Set<StudentStudy> studies;

    /* getters and setters methods */
}

Study Entity

@Entity
@Table(name = "Study")
@FilterDef(name = "active")
@Filter(name = "active", condition="state = true")
public class Study
{
    /*...*/

    @OneToMany
    Set<StudentStudy> students;

    @Field
    boolean state;

    /* getters and setters methods */
}

StudentStudy Entity

@Entity
@Table(name = "StudentStudy")
@Filter(name = "active", condition = "EXISTS(SELECT * FROM Study s WHERE state = true and s.id =
study_id)")
public class StudentStudy
{
    /*...*/

    @ManytoOne
    Student student;

    @ManytoOne
    Study study;

    /* getters and setters methods */

https://goalkicker.com/


GoalKicker.com – Hibernate Notes for Professionals 20

}

This way, every time the "active" filter is enabled,

-Every query we do on the student entity will return ALL Students with ONLY their state = true studies

-Every query we do on the Study entity will return ALL state = true studies

-Every query we do on the StudentStudy entiy will return ONLY the ones with a state = true Study relationship

Pls note that study_id is the name of the field on the sql StudentStudy table

Section 7.2: List using Restrictions
Assuming we have a TravelReview table with City names as column "title"

 Criteria criteria =
    session.createCriteria(TravelReview.class);
  List review =
    criteria.add(Restrictions.eq("title", "Mumbai")).list();
  System.out.println("Using equals: " + review);

We can add restrictions to the criteria by chaining them as follows:

List reviews = session.createCriteria(TravelReview.class)
   .add(Restrictions.eq("author", "John Jones"))
   .add(Restrictions.between("date",fromDate,toDate))
   .add(Restrictions.ne("title","New York")).list();

Section 7.3: Using Projections
Should we wish to retrieve only a few columns, we can use the Projections class to do so. For example, the following
code retrieves the title column

 // Selecting all title columns
  List review = session.createCriteria(TravelReview.class)
        .setProjection(Projections.property("title"))
    .list();
  // Getting row count
  review = session.createCriteria(TravelReview.class)
    .setProjection(Projections.rowCount())
    .list();
  // Fetching number of titles
  review = session.createCriteria(TravelReview.class)
    .setProjection(Projections.count("title"))
    .list();

https://goalkicker.com/


GoalKicker.com – Hibernate Notes for Professionals 21

Chapter 8: Custom Naming Strategy
Section 8.1: Creating and Using a Custom
ImplicitNamingStrategy
Creating a custom ImplicitNamingStrategy allows you to tweak how Hibernate will assign names to non-explicitly
named Entity attributes, including Foreign Keys, Unique Keys, Identifier Columns, Basic Columns, and more.

For example, by default, Hibernate will generate Foreign Keys which are hashed and look similar to:

FKe6hidh4u0qh8y1ijy59s2ee6m

While this is often not an issue, you may wish that the name was more descriptive, such as:

FK_asset_tenant

This can easily be done with a custom ImplicitNamingStrategy.

This example extends the ImplicitNamingStrategyJpaCompliantImpl, however you may choose to implement
ImplicitNamingStrategy if you wish.

import org.hibernate.boot.model.naming.Identifier;
import org.hibernate.boot.model.naming.ImplicitForeignKeyNameSource;
import org.hibernate.boot.model.naming.ImplicitNamingStrategyJpaCompliantImpl;

public class CustomNamingStrategy extends ImplicitNamingStrategyJpaCompliantImpl {

    @Override
    public Identifier determineForeignKeyName(ImplicitForeignKeyNameSource source) {
        return toIdentifier("FK_" + source.getTableName().getCanonicalName() + "_" +
source.getReferencedTableName().getCanonicalName(), source.getBuildingContext());
    }

}

To tell Hibernate which ImplicitNamingStrategy to use, define the hibernate.implicit_naming_strategy
property in your persistence.xml or hibernate.cfg.xml file as below:

<property name="hibernate.implicit_naming_strategy"
                 value="com.example.foo.bar.CustomNamingStrategy"/>

Or you can specify the property in hibernate.properties file as below:

hibernate.implicit_naming_strategy=com.example.foo.bar.CustomNamingStrategy

In this example, all Foreign Keys which do not have an explicitly defined name will now get their name from the
CustomNamingStrategy.

Section 8.2: Custom Physical Naming Strategy
When mapping our entities to database table names we rely on a @Table annotation. But if we have a naming
convention for our database table names, we can implement a custom physical naming strategy in order to tell
hibernate to calculate table names based on the names of the entities, without explicitly stating those names with
@Table annotation. Same goes for attributes and columns mapping.

https://docs.jboss.org/hibernate/orm/5.1/javadocs/org/hibernate/boot/model/naming/ImplicitNamingStrategy.html
https://docs.jboss.org/hibernate/orm/5.1/javadocs/org/hibernate/boot/model/naming/ImplicitNamingStrategyJpaCompliantImpl.html
https://docs.jboss.org/hibernate/orm/5.1/javadocs/org/hibernate/boot/model/naming/ImplicitNamingStrategy.html
https://goalkicker.com/


GoalKicker.com – Hibernate Notes for Professionals 22

For example, our entity name is:

ApplicationEventLog

And our table name is:

application_event_log

Our Physical naming strategy needs to convert from entity names that are camel case to our db table names which
are snake case. We can achieve this by extending hibernate's PhysicalNamingStrategyStandardImpl:

import org.hibernate.boot.model.naming.Identifier;
import org.hibernate.boot.model.naming.PhysicalNamingStrategyStandardImpl;
import org.hibernate.engine.jdbc.env.spi.JdbcEnvironment;

public class PhysicalNamingStrategyImpl extends PhysicalNamingStrategyStandardImpl {

    private static final long serialVersionUID = 1L;
    public static final PhysicalNamingStrategyImpl INSTANCE = new PhysicalNamingStrategyImpl();

    @Override
    public Identifier toPhysicalTableName(Identifier name, JdbcEnvironment context) {
        return new Identifier(addUnderscores(name.getText()), name.isQuoted());
    }

    @Override
    public Identifier toPhysicalColumnName(Identifier name, JdbcEnvironment context) {
        return new Identifier(addUnderscores(name.getText()), name.isQuoted());
    }

    protected static String addUnderscores(String name) {
        final StringBuilder buf = new StringBuilder(name);
        for (int i = 1; i < buf.length() - 1; i++) {
            if (Character.isLowerCase(buf.charAt(i - 1)) &&
                    Character.isUpperCase(buf.charAt(i)) &&
                    Character.isLowerCase(buf.charAt(i + 1))) {
                buf.insert(i++, '_');
            }
        }
        return buf.toString().toLowerCase(Locale.ROOT);
    }
}

We are overriding default behavior of methods toPhysicalTableName and toPhysicalColumnName to apply our db
naming convention.

In order to use our custom implementation we need to define hibernate.physical_naming_strategy property and
give it the name of our PhysicalNamingStrategyImpl class.

hibernate.physical_naming_strategy=com.example.foo.bar.PhysicalNamingStrategyImpl

This way we can alleviate our code from @Table and @Column annotations, so our entity class:

@Entity
public class ApplicationEventLog {
    private Date startTimestamp;
    private String logUser;
    private Integer eventSuccess;

https://goalkicker.com/


GoalKicker.com – Hibernate Notes for Professionals 23

    @Column(name="finish_dtl")
    private String finishDetails;
}

will be correctly be mapped to db table:

CREATE TABLE application_event_log (
  ...
  start_timestamp timestamp,
  log_user varchar(255),
  event_success int(11),
  finish_dtl varchar(2000),
  ...
)

As seen in the example above, we can still explicitly state the name of the db object if it is not, for some reason, in
accordance with our general naming convention: @Column(name="finish_dtl")

https://goalkicker.com/


GoalKicker.com – Hibernate Notes for Professionals 24

Chapter 9: Caching
Section 9.1: Enabling Hibernate Caching in WildFly
To enable Second Level Caching for Hibernate in WildFly, add this property to your persistence.xml file:

<property name="hibernate.cache.use_second_level_cache" value="true"/>

You may also enable Query Caching with this property:

<property name="hibernate.cache.use_query_cache" value="true"/>

WildFly does not require you to define a Cache Provider when enabling Hibernate's Second-Level Cache, as
Infinispan is used by default. If you would like to use an alternative Cache Provider, however, you may do so with
the hibernate.cache.provider_class property.

http://www.tutorialspoint.com/hibernate/hibernate_caching.htm
http://www.tutorialspoint.com/hibernate/hibernate_caching.htm
https://goalkicker.com/


GoalKicker.com – Hibernate Notes for Professionals 25

Chapter 10: Association Mappings between
Entities
Section 10.1: One to many association using XML
This is an example of how you would do a one to many mapping using XML. We will use Author and Book as our
example and assume an author may have written many books, but each book will only have one author.

Author class:

public class Author {
    private int id;
    private String firstName;
    private String lastName;
   
    public Author(){
       
    }
    public int getId(){
        return id;
    }
    public void setId(int id){
        this.id = id;
    }
    public String getFirstName(){
        return firstName;
    }
    public void setFirstName(String firstName){
        this.firstName = firstName;
    }
    public String getLastName(){
        return lastName;
    }
    public void setLastName(String lastName){
        this.lastName = lastName;
    }
}

Book class:

public class Book {
    private int id;
    private String isbn;
    private String title;    
    private Author author;
    private String publisher;
   
    public Book() {
        super();
    }
    public int getId() {
        return id;
    }
    public void setId(int id) {
        this.id = id;
    }
    public String getIsbn() {
        return isbn;

https://goalkicker.com/


GoalKicker.com – Hibernate Notes for Professionals 26

    }
    public void setIsbn(String isbn) {
        this.isbn = isbn;
    }
    public String getTitle() {
        return title;
    }
    public void setTitle(String title) {
        this.title = title;
    }
    public Author getAuthor() {
        return author;
    }
    public void setAuthor(Author author) {
        this.author = author;
    }
    public String getPublisher() {
        return publisher;
    }
    public void setPublisher(String publisher) {
        this.publisher = publisher;
    }
}

Author.hbm.xml:

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
   "-//Hibernate/Hibernate Mapping DTD//EN"
   "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd" >

<hibernate-mapping>
   <class name="Author" table="author">
      <meta attribute="class-description">
         This class contains the author's information.
      </meta>
      <id name="id" type="int" column="author_id">
         <generator class="native"/>
      </id>
      <property name="firstName" column="first_name" type="string"/>
      <property name="lastName" column="last_name" type="string"/>
   </class>
</hibernate-mapping>

Book.hbm.xml:

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
    "-//Hibernate/Hibernate Mapping DTD//EN"
    "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd" >

<hibernate-mapping>
    <class name="Book" table="book_title">
      <meta attribute="class-description">
         This class contains the book information.
      </meta>
        <id name="id" type="int" column="book_id">
            <generator class="native"/>
        </id>
        <property name="isbn" column="isbn" type="string"/>
        <property name="title" column="title" type="string"/>

https://goalkicker.com/


GoalKicker.com – Hibernate Notes for Professionals 27

         <many-to-one name="author" class="Author" cascade="all">
             <column name="author"></column>
         </many-to-one>
        <property name="publisher" column="publisher" type="string"/>
    </class>
</hibernate-mapping>

What makes the one to many connection is that the Book class contains an Author and the xml has the <many-to-
one> tag. The cascade attribute allows you to set how the child entity will be saved/updated.

Section 10.2: OneToMany association
To illustrate relation OneToMany we need 2 Entities e.g. Country and City. One Country has multiple Cities.

In the CountryEntity beloww we define set of cities for Country.

@Entity
@Table(name = "Country")
public class CountryEntity implements Serializable
{
   private static final long serialVersionUID = 1L;
 
   @Id
   @Column(name = "COUNTRY_ID", unique = true, nullable = false)
   @GeneratedValue(strategy = GenerationType.SEQUENCE)
   private Integer           countryId;
 
   @Column(name = "COUNTRY_NAME", unique = true, nullable = false, length = 100)
   private String            countryName;

   @OneToMany(mappedBy="country", fetch=FetchType.LAZY)
   private Set<CityEntity> cities = new HashSet<>();

   //Getters and Setters are not shown
}

Now the city entity.

@Entity
@Table(name = "City")
public class CityEntity implements Serializable
{
   private static final long serialVersionUID = 1L;
 
   @Id
   @Column(name = "CITY_ID", unique = true, nullable = false)
   @GeneratedValue(strategy = GenerationType.SEQUENCE)
   private Integer           cityId;
 
   @Column(name = "CITY_NAME", unique = false, nullable = false, length = 100)
   private String            cityName;

   @ManyToOne(optional=false, fetch=FetchType.EAGER)
   @JoinColumn(name="COUNTRY_ID", nullable=false)
   private CountryEntity country;
 
   //Getters and Setters are not shown
}

https://goalkicker.com/


GoalKicker.com – Hibernate Notes for Professionals 28

Chapter 11: Lazy Loading vs Eager Loading
Section 11.1: Lazy Loading vs Eager Loading
Fetching or loading data can be primarily classified into two types: eager and lazy.

In order to use Hibernate make sure you add the latest version of it to the dependencies section of your pom.xml
file:

<dependency>
    <groupId>org.hibernate</groupId>
    <artifactId>hibernate-core</artifactId>  
    <version>5.2.1.Final</version>
</dependency>

1. Eager Loading And Lazy Loading

The first thing that we should discuss here is what lazy loading and eager loading are:

Eager Loading is a design pattern in which data initialization occurs on the spot. It means that collections are
fetched fully at the time their parent is fetched (fetch immediately)

Lazy Loading is a design pattern which is used to defer initialization of an object until the point at which it is
needed. This can effectively contribute to application's performance.

2. Using The Different Types Of Loading

Lazy loading can be enabled using the following XML parameter:

lazy="true"

Let's delve into the example. First we have a User class:

public class User implements Serializable {
   
    private Long userId;
    private String userName;
    private String firstName;
    private String lastName;
    private Set<OrderDetail> orderDetail = new HashSet<>();

    //setters and getters
    //equals and hashcode
    }

Look at the Set of orderDetail that we have. Now let's have a look at the OrderDetail class:

public class OrderDetail implements Serializable {

    private Long orderId;
    private Date orderDate;
    private String orderDesc;
    private User user;

    //setters and getters
    //equals and hashcode

https://goalkicker.com/


GoalKicker.com – Hibernate Notes for Professionals 29

}

The important part that is involved in setting the lazy loading in the UserLazy.hbm.xml:

<set name="orderDetail" table="USER_ORDER" inverse="true" lazy="true" fetch="select">
    <key>
        <column name="USER_ID" not-null="true" />
    </key>
   <one-to-many class="com.baeldung.hibernate.fetching.model.OrderDetail" />
</set>

This is how the lazy loading is enabled. To disable lazy loading we can simply use: lazy = "false" and this in turn
will enable eager loading. The following is the example of setting up eager loading in another file User.hbm.xml:

<set name="orderDetail" table="USER_ORDER" inverse="true" lazy="false" fetch="select">
    <key>
        <column name="USER_ID" not-null="true" />
    </key>
   <one-to-many class="com.baeldung.hibernate.fetching.model.OrderDetail" />
</set>

Section 11.2: Scope
For those who haven't played with these two designs, the scope of lazy and eager is within a specific Session of
SessionFactory. Eager loads everything instantly, means there is no need to call anything for fetching it. But lazy fetch
usually demands some action to retrieve mapped collection/object. This sometimes is problematic getting lazy fetch
outside the session. For instance, you have a view which shows the detail of the some mapped POJO.

@Entity
public class User {
    private int userId;
    private String username;
    @OneToMany
    private Set<Page> likedPage;

    // getters and setters here
}

@Entity
public class Page{
    private int pageId;
    private String pageURL;

    // getters and setters here
}

public class LazzyTest{
    public static void main(String...s){
        SessionFactory sessionFactory = new SessionFactory();
        Session session = sessionFactory.openSession();
        Transaction transaction = session.beginTransaction();
       
        User user = session.get(User.class, 1);
        transaction.commit();
        session.close();
       
        // here comes the lazy fetch issue
        user.getLikedPage();
    }

https://goalkicker.com/


GoalKicker.com – Hibernate Notes for Professionals 30

}

When you will try to get lazy fetched outside the session you will get the lazyinitializeException. This is because by
default fetch strategy for all oneToMany or any other relation is lazy(call to DB on demand) and when you have
closed the session, you have no power to communicate with database. so our code tries to fetch collection of
likedPage and it throws exception because there is no associated session for rendering DB.

Solution for this is to use:

Open Session in View - In which you keep the session open even on the rendered view.1.
Hibernate.initialize(user.getLikedPage()) before closing session - This tells hibernate to initialize the2.
collection elements

https://docs.jboss.org/hibernate/orm/3.5/javadocs/org/hibernate/LazyInitializationException.html
https://dzone.com/articles/open-session-view-design
https://goalkicker.com/


GoalKicker.com – Hibernate Notes for Professionals 31

Chapter 12: Enable/Disable SQL log
Section 12.1: Using a logging config file
In the logging configuration file of your choice set the logging of the following packages to the levels shown.:

# log the sql statement
org.hibernate.SQL=DEBUG
# log the parameters
org.hibernate.type=TRACE

There will probably be some logger specific prefixes that are required.

Log4j config:

log4j.logger.org.hibernate.SQL=DEBUG
log4j.logger.org.hibernate.type=TRACE

Spring Boot application.properties:

logging.level.org.hibernate.SQL=DEBUG
logging.level.org.hibernate.type=TRACE

Logback logback.xml:

<logger name="org.hibernate.SQL" level="DEBUG"/>
<logger name="org.hibernate.type" level="TRACE"/>

Section 12.2: Using Hibernate properties
This will show you the generated SQL, but will not show you the values contained within the queries.

<bean id="sessionFactory"
    class="org.springframework.orm.hibernate4.LocalSessionFactoryBean">
    <property name="hibernateProperties">
        <props>
            <!-- show the sql without the parameters -->
            <prop key="hibernate.show_sql">true</prop>
            <!-- format the sql nice -->
            <prop key="hibernate.format_sql">true</prop>
            <!-- show the hql as comment -->
            <prop key="use_sql_comments">true</prop>
        </props>
    </property>
</bean>

Section 12.3: Enable/Disable SQL log in debug
Some applications that use Hibernate generate a huge amount of SQL when the application is started. Sometimes
it's better to enable/disable the SQL log in specific points when debugging.

To enable, just run this code in your IDE when you are debugging the aplication:

org.apache.log4j.Logger.getLogger("org.hibernate.SQL")

https://goalkicker.com/


GoalKicker.com – Hibernate Notes for Professionals 32

    .setLevel(org.apache.log4j.Level.DEBUG)

To disable:

org.apache.log4j.Logger.getLogger("org.hibernate.SQL")
    .setLevel(org.apache.log4j.Level.OFF)

https://goalkicker.com/


GoalKicker.com – Hibernate Notes for Professionals 33

Chapter 13: Hibernate and JPA
Section 13.1: Relationship between Hibernate and JPA
Hibernate is an implementation of the JPA standard. As such, everything said there is also true for Hibernate.

Hibernate has some extensions to JPA. Also, the way to set up a JPA provider is provider-specific. This
documentation section should only contain what is specific to Hibernate.

https://goalkicker.com/


GoalKicker.com – Hibernate Notes for Professionals 34

Chapter 14: Performance tuning
Section 14.1: Use composition instead of inheritance
Hibernate has some strategies of inheritance. The JOINED inheritance type do a JOIN between the child entity and
parent entity.

The problem with this approach is that Hibernate always bring the data of all involved tables in the inheritance.

Per example, if you have the entities Bicycle and MountainBike using the JOINED inheritance type:

@Entity
@Inheritance(strategy = InheritanceType.JOINED)
public abstract class Bicycle {

}

And:

@Entity
@Inheritance(strategy = InheritanceType.JOINED)
public class MountainBike extends Bicycle {

}

Any JPQL query that hit MountainBike will brings the Bicycle data, creating a SQL query like:

SELECT mb.*, b.* FROM MountainBike mb JOIN Bicycle b ON b.id = mb.id WHERE ...

If you have another parent for Bicycle (like Transport, per example), this above query will brings the data from this
parent too, doing an extra JOIN.

As you can see, this is a kind of EAGER mapping too. You don't have the choice to bring only the data of the
MountainBike table using this inheritance strategy.

The best for performance is use composition instead of inheritance.

To accomplish this, you can mapping the MountainBike entity to have a field bicycle:

@Entity
public class MountainBike {

    @OneToOne(fetchType = FetchType.LAZY)
    private Bicycle bicycle;

}

And Bicycle:

@Entity
public class Bicycle {

}

Every query now will bring only the MountainBike data by default.

https://goalkicker.com/


GoalKicker.com – Hibernate Notes for Professionals 35

Credits
Thank you greatly to all the people from Stack Overflow Documentation who helped provide this content,

more changes can be sent to web@petercv.com for new content to be published or updated

Aleksei Loginov Chapter 3
BELLIL Chapter 11
Daniel Käfer Chapters 5 and 12
Dherik Chapters 12 and 14
JamesENL Chapters 1, 3 and 12
Michael Piefel Chapters 12 and 13
Mitch Talmadge Chapters 8 and 9
Naresh Kumar Chapters 1 and 8
Nathaniel Ford Chapter 5
omkar sirra Chapter 6
Pritam Banerjee Chapter 11
Reborn Chapter 1
rObOtAndChalie Chapter 2
Saifer Chapter 7
Sameer Srivastava Chapter 7
Sandeep Kamath Chapter 5
StanislavL Chapter 10
user7491506 Chapters 1, 4 and 10
veljkost Chapter 8
vicky Chapter 11

mailto:web@petercv.com
https://stackoverflow.com/users/4624001/
https://stackoverflow.com/users/3623163/
https://stackoverflow.com/users/1079174/
https://stackoverflow.com/users/2387977/
https://stackoverflow.com/users/2357233/
https://stackoverflow.com/users/2621917/
https://stackoverflow.com/users/2364405/
https://stackoverflow.com/users/5917671/
https://stackoverflow.com/users/442945/
https://stackoverflow.com/users/5371862/
https://stackoverflow.com/users/1475228/
https://stackoverflow.com/users/3605712/
https://stackoverflow.com/users/4581645/
https://stackoverflow.com/users/4940033/
https://stackoverflow.com/users/3705518/
https://stackoverflow.com/users/4374472/
https://stackoverflow.com/users/301607/
https://stackoverflow.com/users/7491506/
https://stackoverflow.com/users/3535298/
https://stackoverflow.com/users/2000187/
https://goalkicker.com/


You may also like

https://goalkicker.com/AlgorithmsBook
https://goalkicker.com/CBook
https://goalkicker.com/GitBook
https://goalkicker.com/JavaBook
https://goalkicker.com/JavaEEBook
https://goalkicker.com/HTML5Book
https://goalkicker.com/PythonBook
https://goalkicker.com/SpringFrameworkBook
https://goalkicker.com/SQLBook

	Content list
	About
	Chapter 1: Getting started with Hibernate
	Section 1.1: Using XML Conﬁguration to set up Hibernate
	Section 1.2: Simple Hibernate example using XML
	Section 1.3: XML-less Hibernate conﬁguration

	Chapter 2: Fetching in Hibernate
	Section 2.1: It is recommended to use FetchType.LAZY. Join fetch the columns when they are needed

	Chapter 3: Hibernate Entity Relationships using Annotations
	Section 3.1: Bi-Directional Many to Many using user managed join table object
	Section 3.2: Bi-Directional Many to Many using Hibernate managed join table
	Section 3.3: Bi-directional One to Many Relationship using foreign key mapping
	Section 3.4: Bi-Directional One to One Relationship managed by Foo.class
	Section 3.5: Uni-Directional One to Many Relationship using user managed join table
	Section 3.6: Uni-directional One to One Relationship

	Chapter 4: HQL
	Section 4.1: Selecting a whole table
	Section 4.2: Select speciﬁc columns
	Section 4.3: Include a Where clause
	Section 4.4: Join

	Chapter 5: Native SQL Queries
	Section 5.1: Simple Query
	Section 5.2: Example to get a unique result

	Chapter 6: Mapping associations
	Section 6.1: One to One Hibernate Mapping

	Chapter 7: Criterias and Projections
	Section 7.1: Use Filters
	Section 7.2: List using Restrictions
	Section 7.3: Using Projections

	Chapter 8: Custom Naming Strategy
	Section 8.1: Creating and Using a Custom ImplicitNamingStrategy
	Section 8.2: Custom Physical Naming Strategy

	Chapter 9: Caching
	Section 9.1: Enabling Hibernate Caching in WildFly

	Chapter 10: Association Mappings between Entities
	Section 10.1: One to many association using XML
	Section 10.2: OneToMany association

	Chapter 11: Lazy Loading vs Eager Loading
	Section 11.1: Lazy Loading vs Eager Loading
	Section 11.2: Scope

	Chapter 12: Enable/Disable SQL log
	Section 12.1: Using a logging conﬁg ﬁle
	Section 12.2: Using Hibernate properties
	Section 12.3: Enable/Disable SQL log in debug

	Chapter 13: Hibernate and JPA
	Section 13.1: Relationship between Hibernate and JPA

	Chapter 14: Performance tuning
	Section 14.1: Use composition instead of inheritance

	Credits
	You may also like

